Chem. Ber. 102, 3713-3724 (1969)

Herbert Schumann und Albrecht Roth

Organometallarsine, V1-4)

Synthese, Infrarot- und ¹H-NMR-Spektren von Organozinnarsinen

Aus dem Institut für Anorganische Chemie der Universität Würzburg (Eingegangen am 12. Mai 1969)

Durch Umsetzung von Triphenyl- bzw. Trimethylzinnchlorid mit Diphenylarsin, Dimethylarsin, Phenylarsin, Methylarsin oder Arsenwasserstoff gelang die Synthese von Triphenylstannyl- bzw. Trimethylstannyl-diphenylarsin, Trimethylstannyl-dimethylarsin, Bis(triphenylstannyl)- bzw. Bis(trimethylstannyl)-phenylarsin sowie von Tris(triphenylstannyl)- bzw. Tris(trimethylstannyl)-arsin. Die Darstellung von Diphenylstannyl-bis(diphenylarsin), Phenylstannyl-tris(diphenylarsin) und Zinn-tetrakis(diphenylarsin) erfolgte durch Umsetzung von Diphenylzinndichlorid, Phenylzinntrichlorid bzw. Zinntetrachlorid mit Kalium-diphenylarsid in flüssigem Ammoniak. — Die Infrarot- und ¹H-NMR-Daten der Verbindungen werden diskutiert.

Durch Umsetzung von Phenylchlorarsinen bzw. Arsentrichlorid mit Lithiumtriphenylstannan oder durch Reaktion von Natriumdiphenylarsid mit Phenylzinnhalogeniden bzw. Zinntetrachlorid in flüssigem Ammoniak erhielten wir eine größere Anzahl perphenylierter Organozinn-arsine^{1,4)}. Diese beiden Synthesewege erwiesen sich aber als nur beschränkt geeignet; die Verbindungen waren teilweise in nur sehr geringer Ausbeute und wie sich an Hand der hier beschriebenen Versuche zeigte, zum Teil in unbefriedigender Reinheit isolierbar. Wir suchten deshalb nach einer besseren Darstellungsmethode, die darüber hinaus analoge methylsubstituierte Derivate zugänglich machen sollte⁵⁾.

Darstellung

In Analogie zur erfolgreichen Synthese von Triphenylstannyl-diphenylphosphin aus Triphenylzinnchlorid und Diphenylphosphin in Gegenwart von Triäthylamin als Chlorwasserstoff-Acceptor⁶⁾ ließ die Umsetzung von Triphenylzinnchlorid mit Diphenylarsin unter gleichen Reaktionsbedingungen die Bildung von Triphenylstannyldiphenylarsin erwarten. Zur Darstellung des benötigten Diphenylarsins wählten wir

I. Mitteil.: H. Schumann und M. Schmidt, Angew. Chem. 76, 344 (1964); Angew. Chem. internat. Edit. 3, 316 (1964).

²⁾ II. Mitteil.: H. Schumann und M. Schmidt, Inorg. nucl. Chem. Letters 1, 1 (1965).

³⁾ III. Mitteil.: H. Schumann, A. Roth, O. Stelzer und M. Schmidt, Inorg. nucl. Chem. Letters 2, 311 (1966).

IV. Mitteil.: H. Schumann, Th. Östermann und M. Schmidt, Chem. Ber. 99, 2057 (1966).
 Trimethylstannyl-dimethylarsin konnte kürzlich in wäßriger Lösung synthetisiert werden: E. W. Abel, R. Hönigschmidt-Grossich und S. M. Illingworth, J. chem. Soc. [London]

<sup>1968, 2623.
6)</sup> H. Schumann, P. Schwabe und O. Stelzer, Chem. Ber. 102, 2900 (1969).

ein der Reduktion von Diphenylarsinsäure mit Zinkamalgam⁷⁾ überlegenes Verfahren, nämlich die Hydrolyse von Kalium-diphenylarsid (1). Letzteres entsteht neben Phenylkalium durch Einwirkung von Kalium auf Triphenylarsin in Tetrahydrofuran unter Stickstoffatmosphäre. Die Hydrolyse der bei dieser Spaltungsreaktion entstehenden dunkelroten Lösung mit sauerstoff-freiem Wasser liefert in 30 proz. Ausbeute Diphenylarsin (2).

$$(C_6H_5)_2A_8K + C_6H_5K$$

$$(1)$$

$$(C_6H_5)_2A_8H + KOH$$

$$(2)$$

Stöchiometrische Mengen von Triphenylzinnchlorid und 2 reagieren entsprechend der Erwartung in Anwesenheit von Triäthylamin glatt und in guten Ausbeuten zu Triphenylstannyl-diphenylarsin (3). Diese Methode der Darstellung von Organozinnarsinen durch Halogenwasserstoffabspaltung aus Organozinnhalogeniden und Organoarsinen bzw. Arsin in Anwesenheit einer Hilfsbase führt immer dann zum Ziel, wenn Triorganozinn-arsine dargestellt werden sollen. So gelang uns im weiteren die Isolierung von Bis(triphenylstannyl)-phenylarsin (4), Tris(triphenylstannyl)-arsin (5), Trimethylstannyl-diphenylarsin (6), Bis(trimethylstannyl)-phenylarsin (7), Tris(trimethylstannyl)-arsin (8), Triphenylstannyl-dimethylarsin (9), Trimethylstannyl-dimethylarsin (10) und Bis(trimethylstannyl)-methylarsin (11).

Die neben Diphenylarsin als Ausgangskomponenten notwendigen Arsenverbindungen Phenylarsin, Dimethyl- und Methylarsin sowie Arsin selbst wurden durch

⁷⁾ W. M. Dehn und B. B. Wilcox, Amer. chem. J. 35, 45 (1906).

Reduktion von Benzolarsonsäure mit Zinkamalgam⁸⁾ bzw. durch Reduktion von Dimethylchlorarsin⁹⁾, Methyldichlorarsin¹⁰⁾ und Arsentrichlorid mit Lithiumalanat erhalten.

Diphenyl- und Dimethylzinndichlorid reagieren mit Organoarsinen in Gegenwart von Triäthylamin nur noch in unbefriedigendem Umfang unter Bildung schmieriger, öliger Produkte, die sich nicht weiter aufarbeiten lassen. Der Grund für dieses gegenüber Triorganozinnchloriden andersartige Verhalten mag in der vergleichsweise größeren Tendenz von Diorganozinndichloriden zur Ausbildung stabilerer und durch Organoarsine nicht mehr gezielt angreifbarer Amin-Komplexe zu sehen sein; ein Verhalten, das sich beim Übergang zu Organozinntrichloriden und Zinntetrachlorid noch weiter verstärkt.

Als geeignet für die Darstellung von Diphenylstannyl-bis(diphenylarsin) (12), Phenylstannyl-tris(diphenylarsin) (13) und Zinn-tetrakis(diphenylarsin) (14) erwies sich dagegen die Umsetzung der entsprechenden Organozinnchloride bzw. von Zinntetrachlorid mit 1 in flüssigem Ammoniak. Der Reaktionsverlauf gestaltet sich jedoch sehr unübersichtlich, wenn das Zinnhalogenid direkt in die bei der Spaltung von Triphenylarsin mit Kalium oder Natrium⁴⁾ in flüssigem Ammoniak entstehende Lösung von 1 bzw. Natrium-diphenylarsid eingetragen wird. Diese Schwierigkeit läßt sich dadurch umgehen, daß man aus 2 (dargestellt aus 1 nach Gl. (2)) und Kalium in flüssigem Ammoniak eine durch keine Zweitprodukte verunreinigte Lösung genau bekannten Gehaltes an 1 bereitet:

Entsprechende methylstannyl- bzw. methylarsinsubstituierte Derivate ließen sich auch nach dieser Methode nicht darstellen. Sie sind offenbar unter den gewählten Reaktionsbedingungen instabil.

Eigenschaften

Die dargestellten Organozinnarsine - 6, 7, 8, 10 und 11 sind unter Normalbedingungen farblose Flüssigkeiten, 3, 4, 5, 9, 12, 13 und 14 farblose kristalline Verbindungen - lösen sich gut und ohne Zersetzung in aromatischen Kohlenwasserstoffen und cyclischen Äthern wie Tetrahydrofuran oder Dioxan. Die Festsubstanzen lassen sich aus aliphatischen Kohlenwasserstoffen, wie Pentan oder Methylcyclohexan gut umkristallisieren.

Phenylstannyl-phenylarsine sind in Inertgasatmosphäre thermisch erstaunlich beständig. Von Sauerstoff werden sie dagegen, zum Teil sogar sehr rasch, oxydativ angegriffen.

⁸⁾ C. S. Palmer und R. Adams, J. Amer. chem. Soc. 44, 1356 (1922).

⁹⁾ M. v. Auger, C. R. hebd. Seances Acad. Sci. 142, 1152 (1906).

¹⁰⁾ A. Bayer, Liebigs Ann. Chem. 117, 272 (1859).

Methylstannyl-methylarsine sind thermisch nur wenig belastbar, durchwegs extrem oxydationsempfindlich und darüber hinaus mehr oder minder lichtempfindlich und selbstentzündlich.

Infrarot-Spektren

Die beschriebenen Organozinnarsine wurden ausnahmslos IR-spektroskopisch¹¹⁾ untersucht und bei der Auswertung die bisher bekannten Literatur-Angaben^{12–16)} mit herangezogen.

Betrachtet man in den Organozinnarsinen 3, 6, 9 und 10 sowohl die Triorganostannyl- als auch die Diorganoarsin-Gruppe jeweils grob angenähert als schwingende Einheit — aufgrund früher dargelegter Betrachtungen $^{(6)}$ erscheint eine derartige Vereinfachung zulässig —, so sind die aufgeführten Verbindungen einfache Zweimassen-Moleküle der Symmetrie C_s . In ihren IR-Spektren ist somit neben den inneren Schwingungen der Triorganostannyl- und der Diorganoarsin-Einheit nur eine Sn—As-Valenzschwingung im Bereich um 200/cm als starke bis mittelstarke Bande zu erwarten (Tab. 1).

Geht man bei der Betrachtung der Spektren von 4, 7 und 11 von analogen Vereinfachungen aus und setzt zudem berechtigterweise voraus, daß der Winkel Sn As kleiner als 180° ist, so stellen diese Moleküle gewinkelte Dreimassen-Moleküle der Symmetrie C_{2v} dar. Danach sind außer den inneren Schwingungen der Triorganostannyl-Gruppen sowie der Organoarsin-Einheit nur noch drei Schwingungen zu erwarten, nämlich eine antisymmetrische Sn₂As-Valenzschwingung der Rasse B₁, eine symmetrische Sn₂As-Valenzschwingung (A₁) und eine symmetrische Sn₂As-Deformationsschwingung (A₁). Von diesen drei Schwingungen ließen sich in den Spektren die beiden erstgenannten zwischen 240 und 190/cm zuordnen (Tab. 2). Eine Lokalisierung der Deformationsschwingung, die mit Sicherheit unterhalb 150/cm, das heißt in einem Bereich auftreten wird, in welchem das von uns benützte Gerät keine deutbaren Spektren mehr liefert, war nicht möglich.

Die Verbindungen 5 und 8 sind unter den gleichen vereinfachenden Gesichtspunkten als Viermassen-Moleküle des Typs AB_3 zu betrachten. Für sie ergeben sich zwei Möglichkeiten einer symmetrischen Massenanordnung, nämlich eine planare Form mit D_{3h} -Symmetrie oder aber eine trigonale Pyramide der Symmetrie C_{3v} . Die Ergebnisse umfangreicher schwingungsspektroskopischer Untersuchungen an analog gebauten Organometallphosphinen 6.17-19) machen eine planare Struktur unwahr-

Perkin-Elmer 221 und Beckman IR 11, in Nujol-Suspension oder in Substanz kapillar. Wir danken Herrn Prof. Dr. G. Briegleb, Institut für Physikalische Chemie der Universität Würzburg, für die Möglichkeit der Benützung des IR 11-Gerätes.

¹²⁾ H. Kriegsmann und H. Geißler, Z. anorg. allg. Chem. 323, 170 (1963).

¹³⁾ D. H. Brown, H. Mohammed und D. W. A. Sharp, Spectrochim. Acta [London] 21, 659 (1963).

¹⁴⁾ J. Bernstein, M. Hallmann, S. Pinchas und D. Samuel, J. chem. Soc. [London] 1964, 821.

¹⁵⁾ H. Siebert, "Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie", Springer-Verlag, Berlin 1966.

¹⁶⁾ V. S. Griffith und G. A. W. Derwish, J. molecular Spectroscopy 9, 83 (1962).

¹⁷⁾ R. E. Hester und K. Jones, Chem. Commun. 1966, 317.

¹⁸⁾ S. Craddock, G. Davidson, E. A. Ebsworth, G. M. Sheldrick und L. A. Woodward, Spectro-chim. Acta [London] 22, 67 (1966).

¹⁹⁾ E. Fluck, H. Bürger und V. Götze, Z. Naturforsch. 22b, 912 (1967).

Tab. 1. Zuordnung der Infrarot-Frequenzen von 3, 6, 9 und 10 in cm $^{-1}$ (Ph = C_6H_5 , st = stark, m = mittel, s = schwach, Sch = Schulter)

Zuordnung	3	6	9	10
νСН	3040 st	3060 m	3050 Sch	
νСН		3040 Sch		
$v_{as}CH_3$		2980 m	2930 st	2975 st
$\nu_s CH_3$		2900 m	2840 Sch	2905 st
KombSchw.	1955 s	1940 s	1945 s	
KombSchw.	1885 s	1870 s	1875 s	
KombSchw.	1825 s	1800 s	1810 s	
νCC	1580 m	1575 st	1560 s	
vCC	1495 st	1475 st	1475 s	
νCC	1470 st		1455 Sch	
$\delta_{as}CH_3$		1430 st	1420 st	1425 s
νCC	1380 st	1375 s	1370 m	
νCC	1340 s	1325 s	1330 s	
βСН	1302 s	1300 m	1300 m	
βСН	1260 s	1260 s	1260 s	
$\delta_s CH_3(As)$			1256 m	1253 st
$\delta_8 CH_3(Sn)$		1183 m		1182 st
βСН	1190 s		1190 s	
βСН	1157 s	1155 s	1158 s	
ЗСН	1073 st	1065 m	1071 st	
βСН	1021 st	1020 st	1019 st	
Ph(Ring)	997 st	997 st	996 st	
γСН	908 s			
ρCH ₃ (As)	7 4 4 5		892 m	889 st
ρCH ₃ (As)			849 st	847 st
γCH	850 s			
ρCH ₃ (Sn)		764 st		764 st
γCH	735 Sch	730 st	730 st	
γCH	725 st		724 Sch	
γCH	696 st	691 st	697 st	
γCH	679 Sch	031 00	675 s	
γCH	659 s	659 s	658 s	
Ph	618 s	618 s	618 s	
$v_{as}AsC_2$,		572 st	568 m
v _s AsC ₂			563 Sch	558 Sch
$v_{as}SnC_3$		520 st	202 24	520 st
ν _s SnC ₃		501 st		504 st
Ph	472 Sch	469 m		50.50
Ph	460 Sch	456 st		
Ph	447 st	150 %	444 st	
Ph	318 m	314 st	771 36	
Ph	305 m	304 st		
Ph	269 st	278 st		
Ph	259 Sch	278 Sch		
δAsC_2	237 Bell	212 gen	232 m	228 st
Ph	224 st		232 HI	220 81
Ph	204 st			
νSnAs	199 st	188 m	180 m	203 m
$\delta_s SnC_3$	122 8に	172 st	100 III	
$\delta_{as} SnC_3$		172 st 155 m		162 st
vasou C3		133 III		152 m

Tab. 2. Zuordnung der Infrarot-Frequenzen von 4, 7 und 11 in cm^{-1}

Zuordnung	4	7	11
νСΉ	3045 m	3060 st	
$v_{as}CH_3$		2980 st	2951 st
v_sCH_3		2910 st	2900 st
KombSchw.	1950 s	1940 s	
KombSchw.	1885 s	1865 s	
KombSchw.	1820 s	1800 s	
νCC	1580 st	1580 st	
νCC	1490 st	1480 st	
νCC	1470 st		
$\delta_{as}CH_3$		1435 st	1440 m
νCC	1380 st	1345 s	
βСН	1302 s	1300 s	
βСН	1255 s	1260 s	
$\delta_s CH_3(As)$			1242 st
βСН	1190 s		
$\delta_s CH_3(Sn)$		1186 st	1182 st
βСН	1152 s	1156 s	
βСН	1072 st	1066 m	
βСН	1020 st	1021 st	
Ph(Ring)	998 st	999 m	
γСН	905 s		
γСН	848 s		
ρCH ₃ (As)			838 Sch
ρCH ₃ (Sn)		765 st	765 st
γСН	735 Sch	734 Sch	
γСН	727 st		
γСН	697 st	695 st	
γСН	652 Sch	660 s	
Ph	616 s	612 s	
νAsC			549 Sch
$v_{as}SnC_3$		521 st	552 st
$v_s SnC_3$	461.0.1	501 Sch	502 Sch
Ph	461 Sch	462 st	
Ph	446 st	204	
Ph	294 m	294 st	
Ph	268 st		
Ph	254 Sch	227	224 -4
ν _{as} Sn ₂ As	236 st	237 st	234 st
ν _s Sn ₂ As	213 st	190 st	217 st
Ph	205 Sch	188 Sch	186 m
δ _s SnC ₃	180 Sch	100 0011	186 m
Ph Ph	172 m		
T 11	1/2 111		

Tab. 3. Zuordnung der IR-Frequenzen von 5 und 8 in cm⁻¹

Zuordnung	5	8	
vСН	3055 m		
vasCH ₃		2970 st	
vCH	2920 st		
v _s CH ₃		2900 st	
KombSchw.	1950 s		
KombSchw.	1890 s		
KombSchw.	1810 s		
vCC	1570 s		
vCC	1475 st		
vCC	1455 Sch		
vCC	1425 st		
$\delta_{as}CH_3$		1410 m	
vCC	1375 m		
νCC	1325 s		
βСН	1300 s		
всн	1256 s		
δ _s CH ₃		1186 m	
βСН	1152 s		
βСН	1068 m		
βСН	1018 m		
Ph(Ring)	994 st		
γСН	910 s		
γCH	845 s		
γСН	772 s		
ρCH ₃ (Sn)		755 st	
γСН	720 st		
γCH	694 st		
γCH	656 Sch		
Ph	617 s		
$v_{as}SnC_3$		518 st	
ν _s SnC ₃		497 m	
Ph	443 st		
Ph	268 st		
vasSn3As	244 st	233 st	
ν _s Sn ₃ As	211 st	211 st	
Ph	174 m		
$\delta_s SnC_3$		172 m	
Ph	150 m		
$\delta_{as}SnC_3$		157 st	

scheinlich. Nach den dort gegebenen theoretischen Erläuterungen beweist die Infrarot-Aktivität sowohl der antisymmetrischen als auch der symmetrischen Sn₃As-Valenzschwingung von 5 und 8 – diese beiden Banden treten im Bereich von 250 und 200/cm auf (Tab. 3). – das Vorliegen trigonal-pyramidal gebauter Moleküle. Die zusätzlich zu den inneren Schwingungen der Triorganostannyl-Gruppen noch zu erwartenden Deformationsfrequenzen, die mit Sicherheit unterhalb 150/cm auftreten, konnten aus den bereits erwähnten Gründen nicht zugeordnet werden. Die abnehmende Wellenzahlendifferenz zwischen v_{as} Sn₃As und v_{s} Sn₃As beim Übergang von 5 nach 8 läßt

Tab. 4. Zuordnung der IR-Frequenzen von 12, 13 und 14 in cm⁻¹

Zuordnung	12	13	14
νСН	3040 Sch	3050 Sch	3035 Sch
νСН	2900 st	2920 st	2900 st
νСН	2850 Sch	2850 Sch	2850 Sch
KombSchw.	1950 s	1950 s	1950 s
KombSchw.	1880 s	1890 s	1880 s
KombSchw.	1810 s	1815 s	1805 s
νCC	1575 m	1575 m	1575 m
νСС	1480 st	1480 st	1475 st
νCC	1460 Sch	1460 Sch	1460 Sch
νСС	1430 st	1430 st	1430 st
νCC	1380 st	1375 st	1375 st
νСС	1330 s	1335 s	1330 s
βСН	1300 s	1300 s	1300 s
βСН	1260 s	1260 s	1261 s
βСН	1185 s	1185 s	1182 s
βСН	1155 s	1151 s	1152 s
βСН	1090 s	1090 s	1088 m
βСН	1078 Sch	1075 Sch	1075 s
βСН	1068 st	1065 m	1065 m
βСН	1020 st	1020 st	1020 st
Ph(Ring)	998 st	995 st	995 st
γCH	908 s	904 s	904 m
үСН	830 m	840 s	840 s
_Y CH	740 Sch	748 Sch	740 Sch
γCH	728 st	727 st	728 st
үCH	690 st	689 st	690 st
Ph	616 s	611 s	613 s
Ph	468 m	467 st	466 st
Ph	451 st	452 st	451 st
Ph	440 Sch		
Ph	320 st	321 st	319 st
Ph	306 m	306 st	305 m
Ph	283 s	283 st	284 m
$v_{as}SnAs_{2(3)}$	261 st	262 st	
vasSnAs4			260 st
vasSnAs4			228 st
$v_s Sn As_{2(3)}$	228 st	228 st	
Ph	180 s	178 s	178 s
Ph	154 s	153 s	157 s

auf eine Winkelverkleinerung am Arsen schließen; dies kann man als Folge der geringeren räumlichen Behinderung der kompakteren Trimethylstannyl-Gruppen gegenüber den weit raumfüllenderen Triphenylstannyl-Gruppen deuten.

Für die Zuordnung der IR-Spektren von 12, 13 und 14 legten wir für das Arsen-Zinn-Gerüst von 14 Tetraedersymmetrie T_d, für das As₃Sn-Gerüst von 13 Symmetrie C_{3v} sowie für das As₂Sn-Gerüst von 12 Symmetrie C_{2v} zugrunde. Tab. 4 zeigt, daß wir die nach diesen Modellvorstellungen bis 150/cm zu erwartenden Schwingungen zuordnen konnten, während die wieder mit Sicherheit unterhalb 150/cm auftretenden Deformationsschwingungen aus gerätetechnischen Gründen nicht erfaßt werden konnten.

¹H-NMR-Spektren

Die methylsubstituierten Verbindungen 6—11 wurden in 5 proz. benzolischer Lösung ¹H-NMR-spektroskopisch vermessen (Tab. 5) ²⁰⁾. Dabei wurde für die CH₃(Sn)- und bzw. oder die CH₃(As)-Protonen in jedem Fall ein Singulett-Signal erhalten, welches aufgrund von ¹HC^{117/119}Sn-Kopplung bzw. ¹HCAs^{117/119}Sn-Kopplung von je einem Satelliten-Dublett sowie aufgrund von ¹H¹³C-Kopplung darüber hinaus noch von einem dritten Satellitenpaar flankiert wird. Aus Löslichkeitsgründen konnten die ¹H¹³C-Kopplungskonstanten nicht für alle Verbindungen bestimmt werden. Die für 10 erhaltenen Meßdaten zeigen gute Übereinstimmung mit den aus der Literatur^{5,21)} bekannten Werten.

Tab. 5. ¹H-NMR-Daten der Organozinnarsine 6—11 (alle Werte in Hz, Benzol als interner Standard)

	6	7	8	9	10	11
δCH ₃ (As)				+360	+367	+364
δCH ₃ (Sn)	+421	+412	+409		+420	+416
J(1HC117Sn)	49	49	48		48	49
J(1HC119Sn)	51	52	50		51	52
J(1HCAs117Sn)				56	52	46
J(1HCAs119Sn)				58	52	48
$J({}^{1}H^{13}C(As))$?	133	?
J(1H13C(Sn))	130	130	129		129	130

Unser Dank gilt Herrn Prof. Dr. M. Schmidt für die Förderung dieser Arbeit, Herrn Prof. Dr. S. Matthes und Herrn Dr. P. Richter vom Mineralogischen Institut der Universität Würzburg für die Durchführung von Röntgenfluoreszenzanalysen, den Farbwerken Hoechst AG, Werk Gendorf, für die Spende von Triphenylzinnchlorid sowie der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeiten.

²⁰⁾ Varian A 60 (60 MHz).

²¹⁾ E. W. Abel und D. B. Brady, J. organometal. Chem. 11, 145 (1968).

Beschreibung der Versuche

Diphenylarsin (2): In eine Lösung von 110.5 g (360 mMol) Triphenylarsin in 600 ccm wasserfreiem Tetrahydrofuran werden im Stickstoffgegenstrom unter Rühren portionsweise 28.2 g (720 mg-Atom) Kalium eingetragen, wobei die Lösung sich anfangs rot, später dunkelbraun färbt. Nach 1stdg. Erhitzen unter Rückfluß und Abtrennung von nicht umgesetztem Kalium läßt man die Lösung unter Sauerstoffausschluß vorsichtig zu 250 ccm ausgekochtem Wasser unter Rühren zufließen. Nach Abtrennung der organischen Lösungsmittelphase schüttelt man die wäßr. Phase mit 200 ccm Benzol und trocknet die vereinigten organischen Lösungsmittelanteile über Calciumchlorid. Nach Abzug der Lösungsmittel i. Wasserstrahlvak. bei Raumtemperatur wird der verbleibende Rückstand fraktioniert destilliert. Diphenylarsin geht als wasserklares, dünnes Öl von unangenehmem Geruch bei 108—114°/1 Torr (Lit.9): 163°/20 Torr) über. Ausb. 25.2 g (30.5 %).

Kalium-diphenylarsid (1) in ammoniakalischer Lösung: Zu 5.0 g (22 mMol) Diphenylarsin, gelöst in 100 ccm sauerstoff- und wasserfreiem Ammoniak, gibt man in kleinen Portionen 0.85 g (22 mg-Atom) Kalium. Die Lösung färbt sich bei jeder Zugabe an Alkalimetall zunächst blau, nimmt dann aber rasch eine orangerote Farbe an. Das Ende der Reaktion ist erreicht, wenn eine schwache Blaufärbung bestehen bleibt.

Organozinnarsine 3-11

Tab. 6 gibt einen Überblick über die eingesetzten Mengen an Triorganozinnchlorid, Organoarsin bzw. Arsin und an Triäthylamin sowie über die Ausbeuten und Schmelz- bzw. Siedepunkte der jeweils erhaltenen Organozinnarsine. Aus Tab. 7 sind die Analysenwerte der Verbindungen zu entnehmen. Die Mol.-Gewichte wurden kryoskopisch in Benzol bestimmt, die Zinn- und Arsenanalysenwerte durch Röntgenfluoreszenz-Spektroskopie erhalten.

Tab. 6. Darstellung der Organozinnarsine 3-11 (Ph = C_6H_5 , Me = CH_3 , $\ddot{A}t$ = C_2H_5)

R ₃ SnCl g (mMol)	R _{3-n} AsH _n g (mMol)	Ät ₃ N g (mMol)	Reaktions- produkt	Ausb. g (%)	Schmp.	Sdp./Torr
Ph ₃ SnCl 20 (52)	Ph ₂ AsH 12 (52)	7.3 (72)	Ph ₃ SnAsPh ₂	20.4 (67.7)	132 135°	
Ph ₃ SnCl 13 (34)	Ph As H ₂ 2.6 (17)	7.3 (72)	(Ph ₃ Sn) ₂ AsPh 4	11.5 (79.4)	133 – 135°	
Ph ₃ SnCl 30 (78)	AsH ₃ einleiten	14.6 (144)	(Ph ₃ Sn) ₃ As 5	18.3 (62.6)	205-208°	
Me ₃ SnCl 6.1 (31)	Ph ₂ AsH 7.1 (31)	7.3 (72)	Me₃SnAsPh₂ 6	7.4 (60.7)		150 - 152°/1
Me ₃ SnCl 18,2 (91)	PhAsH ₂ 7 (45)	14.6 (144)	(Me ₃ Sn) ₂ AsPh 7	15.5 (71.8)		145 148°/10-
Me ₃ SnCl 12 (60)	AsH ₃ einleiten	14.6 (144)	(Me₃Sn)₃As 8	6 (53.0)		99 – 100°/1
Ph ₃ SnCl 17.5 (45)	Me ₂ AsH 4.8 (45)	5.1 (50)	Ph ₃ SnAsMe ₂ 9	16.5 (80.6)	90° (Zers.)	
Me ₃ SnCl 10.7 (54)	Me ₂ AsH 5.9 (55)	5.9 (58)	Me ₃ SnAsMe ₂ 10	10.3 (71.0)		170 172°/360
Me ₃ SnCl 15 (75)	MeAsH ₂ 3.9 (37)	11 (109)	(Me₃Sn)₂AsMe 11	9.8 (63.4)		105 108°/1

Darstellung von 3, 4, 6, 7, 9 und 10: Zur Lösung des jeweiligen Organozinnehlorids und Organoarsins in sauerstoff- und wasserfreiem Benzol tropft man bei Raumtemperatur unter Rühren und in Argon-Schutzgasatmosphäre die erforderliche Menge an frisch über Calciumhydrid abdestilliertem Triäthylamin. Dabei kommt es in allen Fällen, meist momentan, zur Abscheidung von farblosem, benzolunlöslichem Triäthylammoniumchlorid. Nach 2stdg. Rühren bei der Siedetemperatur des Lösungsmittels (Verbindungen 3, 4, 6 und 7) bzw. nach 6stdg. Rühren bei Raumtemperatur (Verbindungen 9 und 10) wird der gebildete Niederschlag mit einer

	The William of the Control of the Co							
	Verbindung	Ber. Gef.	MolGew.	С	Н	As	Sn	
3	C ₃₀ H ₂₅ AsSn		579.16 554.5	62.22 61.85	4.35 4.14	12.93 12.8	20.50 20.4	
4	$C_{42}H_{35}AsSn_2$		852.05 830	59.21 59.04	4.14 4.06	8.79 8.7	27.86 26.7	
5	C ₅₄ H ₄₅ AsSn ₃		1125.00 1048	57.65 57.82	4.04 4.09	6.66 6.8	31.65 32.0	
6	$C_{15}H_{19}AsSn$		392.94 380.6	45.85 45.15	4.87 4.95	19.06 19.0	30.21 30.7	
7	$C_{12}H_{23}AsSn_2$		479.62 461.1	30.05 29.78	4.83 4.51	15.62 14.8	49.50 50.1	
8	$C_9H_{27}AsSn_3$		566.33 544.5	19.09 18.76	4.81 5.10	13.23 13.8	62.88 62.6	
9	$C_{20}H_{21}AsSn$		455.00 439.6	52.80 51.81	4.65 4.87	16.46 16.6	26.09 26.6	
10	C ₅ H ₁₅ AsSn		268.79 294.0	22.34 22.56	5.63 5.54	27.87 27.6	44.16 44.5	
11	$C_7H_{21}AsSn_2$		417.56 440.1	20.14 20.74	5.07 5.04	17.9 4 17.5	56.85 56.9	
12	$C_{36}H_{30}As_2Sn$		731.16 686.0	59.14 59.80	4.14 4.24	20.49 20.1	16.23 15.8	
13	$C_{42}H_{35}As_3Sn$		883.17 854	57.12 57.41	3.99 4.30	25.45 25.80	13.44 13.90	
14	$C_{48}H_{40}As_4Sn$		1035.18 985.0	55.69 56.70	3.89 3.70	28.95 28.3	11.47 11.5	

Tab. 7. Analysenwerte der Organozinnarsine 3-14

G3-Umkehrfritte unter Argonüberdruck abgetrennt und vom gewonnenen Filtrat das Lösungsmittel abdestilliert. Das zurückbleibende Rohprodukt reibt man im Fall von 3, 4 und 9 mit Pentan an und kristallisiert die sich dabei bildenden Kristalle anschließend aus Methylcyclohexan um, im Falle von 6 und 7 destilliert man dagegen i. Vak. und im Falle von 10 unter Normaldruck fraktioniert.

Darstellung von 5, 8 und 11: In Abänderung der vorstehend beschriebenen Versuchsführung wird in die benzolische Lösung von Triorganozinnehlorid und Triäthylamin im Falle von 5 und 8 bei Raumtemperatur 2 Stdn. gasförmiges Arsin, im Falle von 11 bei -10° ein Überschuß an Methylarsin eingeleitet. 5 wird durch Umkristallisation, 8 und 11 werden durch Vakuumdestillation rein erhalten.

Verbindungen 12, 13 und 14: Tab. 8 gibt einen Überblick über die eingesetzten Mengen der Ausgangsverbindungen sowie über die Ausbeuten und Schmelzpunkte der Produkte. Aus Tab. 7 sind die Analysenwerte der Verbindungen zu entnehmen. Die Mol.-Gewichte wurden kryoskopisch in Benzol bestimmt, die Zinn- und Arsenanalysenwerte durch Röntgenfluoreszenz-Spektroskopie ermittelt.

Zur Lösung von 1 in flüssigem Ammoniak fügt man langsam unter Rühren die stöchiometrisch erforderliche Menge an Diphenylzinndichlorid, Phenylzinntrichlorid bzw. Zinntetrachlorid hinzu. Es tritt in allen Fällen sofort heftige Reaktion ein. Die Umsetzung ist beendet, wenn die ursprünglich durch 1 orangerot gefärbte Lösung entfärbt ist. Anschließend läßt man bei Raumtemperatur unter Rühren das Lösungsmittel abdampfen, nimmt den Rückstand unter peinlichstem Sauerstoffausschluß in Benzol auf, filtriert vom benzolunlöslichen Kaliumchlorid über eine Umkehrfritte ab, engt das Filtrat ein, fällt die Reaktionsprodukte durch Zugabe von Pentan und kristallisiert aus Methylcyclohexan um.

Tab. 8. Darstellung der Organozinnarsine 12, 13 und 14 (Ph = C_6H_5)

R _{4-n} SnCl _n g (mMol)	1 mMol	Reaktions- produkt	Ausb. g (%)	Schmp.
Ph ₂ SnCl ₂ 3.74 (11)	22	Ph ₂ Sn(AsPh ₂) ₂ 12	3.4 (42.3)	130-133° (Zers.)
PhSnCl ₃ 2.52 (8.3)	25	$\frac{PhSn(AsPh_2)_3}{13}$	2.9 (39.6)	84-86°
SnCl ₄ 2 (7.7)	31	Sn(AsPh ₂) ₄ 14	1.5 (18.8)	130—133°

[187/69]